
Algorithms and Algorithmic 
Reasoning

in Mathematica
Lectures at the Workshop

“Introduction to Computer Algebra and Applications”
Douala, Cameroon, October 6 - 13, 2017

Bruno Buchberger
Research Institute for Symbolic Computation

Johannes Kepler University, Linz, Austria

Copyright Note: 

This notebook or any part of it must not be copied without written 
permission of the author. 
If any part of it is used, it must be appropriately cited.

Printed by Wolfram Mathematica Student Edition



Introduction

A Crash Course in Mathematica

The Theory of Natural Numbers

Rough Sketch of an Induction Prover

A More Elaborate Induction Prover

Conclusion

2     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



Goal of My Lectures

The other lectures: Power of current computer algebra / symbolic computation software systems 
including the own important contributions of the lecturers.

My lecture: 

◦ Methodology of (future) mathematics: automated math verification and invention. 

◦ My current research interest (the “Theorema” project)

◦ Maybe, impulse for your own research.

(For avoiding frustration: These lectures are for people who want to focus on understanding 
existing algorithmic mathematics and the invention and proof of new algorithmic mathematics.  
These lectures are not necessary, and maybe not interesting, for people who mainly want to apply 
existing algorithmic mathematics and math software systems for science, technology, economy ... )

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     3

Printed by Wolfram Mathematica Student Edition



Plan of My Lectures

Develop  a very simple automated reasoner in the lectures.

Tutorial: Play with the reasoner in examples.  (Maybe extend the reasoner.)

4     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



How Do we “Do” Mathematics? The “Creativity Spiral”

Problem 

    ↓  

EXPERIMENTING 

    ↓  

Conjecture 

    ↓  

PROVING 

    ↓  

Theorem 

    ↓  

PROGRAMMING 

    ↓  

Algorithm 

    ↓  

APPLYING

    ↓  

Problem 

    ↓  

EXPERIMENTING 

    ↓  

Conjecture 

    ↓  

PROVING 

    ↓  

Theorem 

    ↓  

PROGRAMMING 

    ↓  

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     5

Printed by Wolfram Mathematica Student Edition



Algorithm 

    ↓  

APPLYING

    ↓  

Problem 

    ↓  

EXPERIMENTING 

    ↓  

Conjecture 

    ↓  

PROVING 

    ↓  

Theorem 

    ↓  

PROGRAMMING 

    ↓  

Algorithm 

    ↓  

APPLYING

......

6     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



The “Creativity Spiral”: More Details

Problem     (from science, industry, ...,  or from “within” mathematics)

    ↓  

EXPERIMENTING    (using known algorithms, definitions, theorems, systems...)

    ↓  

Conjecture    (as a result of experimenting: new mathematical knowledge in examples, 
                      not yet proved “for all”)

    
   ↓  

PROVING    (one of the two main mathematical skills)

    ↓  

Theorem      (lemma, proposition, ...; new mathematical knowledge, proved “for all”)

    ↓  

PROGRAMMING   (the second main mathematical skill; 
                                essentially, the correct transition must be proved;
                                however, in practice, ..., testing?)

    ↓  

Algorithm    (method, procedure, program,....)

    ↓  

APPLYING       (solve the problem for any instance by applying the algorithm)

    ↓  

Problem 

    ↓  

EXPERIMENTING 

                                     ........... 

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     7

Printed by Wolfram Mathematica Student Edition



An Example

Problem:     Greatest common divisor of two natural numbers.

EXPERIMENTING:      12 and 18 have the same common divisors as 12 and  18-12, ... .

Conjecture:                 for all t,      t divides  x and y       iff        t  divides  x and  y - x.    

PROVING:    exercise.

Theorem (Euclid):        for all t,      t divides  x and y       iff        t  divides  x and  y - x.    

      

PROGRAMMING:   exercise.

Algorithm (Euclid):                (for example, in Mathematica: an “algorithmic version” of predicate 
logic!)

Clear[gcd]

gcd[x_, x_] := x

gcd[x_, y_] := gcd[x - y, y] /; x > y

gcd[x_, y_] := gcd[x, y - x] /; y > x

APPLYING: 

gcd[0, 0]

0

(A matter of definition!)

gcd[15, 15]

15

gcd[12, 18]

6

8     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



gcd[18, 6]

6

gcd[60, 45]

15

gcd[45, 60]

15

gcd[234 035 435310, 943 234035 435] // Timing

{0.001471, 15}

An algorithm for gcd is already built-in in Mathematica

GCD[234 035 435310, 943 234035 435] // Timing

8. × 10-6, 15

Why is Euclid’s algorithm better than determining the greatest common divisor by factoring?

Why is the built-in algorithm so much faster?

Can Euclid’s algorithm be improved (by going a next round in the “creativity spiral”;  see Lehner’s 
algorithm)?

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     9

Printed by Wolfram Mathematica Student Edition



The Goal of Mathematics on the Object Level and the “Meta” Level

The goal of mathematics:  automation (“algorithmization”) of solving problems in domains of 
objects by thinking (“proving” and “programming”).

Proving and programming are problems on the “meta” domain of thoughts (sentences).

Can we automate (“algorithmize”) proving and programming (“reasoning”)?

10     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



A Hot Topic

Automation of reasoning is a  hot topic today.

Part of  "symbolic computation" (see my editorial for the Journal of Symbolic Computation, 1985).

Today many catch words are floating around like "artificial intelligence", "machine learning" etc.

There is no upper bound for going higher and higher in the layers of automating mathematical 
thinking. 

In a particular historical situation, the highest layer will always be reserved for human mathemati-
cal thinking.

As a consequence, if you want to stay ahead, become a master of thinking and a master of 
automating thinking.

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     11

Printed by Wolfram Mathematica Student Edition



In the Example:

Can we find algorithms that, 

◦ given a conjecture like the one in the above example, can produce 
a proof (or dis-proof) 

◦ and, given a problem like the one in the above example, can 
produce a correct algorithm for the problem?

12     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



Algorithmization on the Object Level and the Meta Level in Parallel

This is a recent research theme for which I will give some very simple examples in this lecture.

For this, a language like Mathematica (which can be considered as an algorithmic version of 
“higher-order” predicate logic) is a useful frame.

In my view, in the future, the work of  mathematicians will be supported by systems in which one 
can do algorithmic work on the object level and the meta level in parallel.

In my Theorema Project, I am pursuing this objective since 1995, see for example:

Bruno Buchberger, Tudor Jebelean, Temur Kutsia, Alexander 

Maletzky, Wolfgang Windsteiger. Theorema 2.0 : Computer - 

Assisted Natural - Style Mathematics. Journal of Formal Reason-

ing, 9 (1), pp.149 - 185. 2016. ISSN 1972 - 5787.

In the Theorema system, by similar methods as the ones I will explain in these lectures, for exam-
ple, the entire theory of Gröbner bases is proved automatically.

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     13

Printed by Wolfram Mathematica Student Edition



Example Theory in the Lecture

“We start from zero” in the literal sense that we take the natural numbers with “zero” and the 
“successor function” as the only ingredients.

We will show, how we can write a simple automated reasoner for proving simple theorems about 
simple operations definable over the natural numbers.

14     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



Introduction

A Crash Course in Mathematica

The Theory of Natural Numbers

Rough Sketch of an Induction Prover

A More Elaborate Induction Prover

Conclusion

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     15

Printed by Wolfram Mathematica Student Edition



The Main Aspects of Mathematica

Mathematica is a mathematical software system designed and built up by Stephen Wolfram 
since 1988.

Mathematica provides a rich high-level programming language (the “Wolfram Language”) whose 
kernel is a version of “higher-order” programming language.

Mathematica also provides a huge library of algorithms for all areas of mathematics.

Mathematica is also a huge knowledge base of facts from all areas of science and economy. (In an 
advanced version this is accessible through the “Wolfram Alpha Machine”.

Mathematica also provides an attractive user-interface that allows to construct nice surface for 
any package who want to program yourself.

In my lectures at this workshop, I will focus on the aspect of writing programs in “pattern 
match” style both for the object level and the meta level of mathematics.

16     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



The Documentation Facility of Mathematica

A comprehensive, detailed, and self-explanatory documentation of Mathematica can be accessed 
via the Menu ‘Help → ‘Wolfram Documentation’.  

You then just type a keyword into the find window or click on one of the mathematical subareas 
displayed and you will obtain entire sequences of  examples and tutorials. 

For example, if your are interested in machine learning: Search for “machine learning” in the 
‘Wolfram Documentation’ and go to the examples in the notebook that pops up:

trainingset = {1 → "A", 2 → "A", 3.5 → "B", 4 → "B"};

c = Classify[trainingset]

ClassifierFunction
Input type: Numerical
Classes: A, B 

Use the classifier function to classify a new unlabeled example:

c[2.6]

A

Obtain classification probabilities for this example:

c[2.6, "Probabilities"]

A → 0.999618, B → 0.000381686

.....

Try to understand how to use the Mathematica functions in this section by experimenting with the 
examples and your own examples.

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     17

Printed by Wolfram Mathematica Student Edition



Calling Algorithms in Mathematica

For basically “all” mathematical problems for which algorithmic solutions are known algorithms 
are available in Mathematica:

Factorial[15]

1 307 674 368000

15!

1 307 674 368000

Sort[{3, 2, 4, 5, 6, 2}]

{2, 2, 3, 4, 5, 6}

DSina2, a

2 a Cosa2

Integrate2 a Cosa2, a

Sina2

18     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



Programming in Mathematica

Clear[factorial]

factorial[0] := 1

factorial[n_] := n factorial[n - 1]

Tests:

Table[factorial[i], {i, 0, 10}]

{1, 1, 2, 6, 24, 120, 720, 5040, 40 320, 362 880, 3 628 800}

Clear[factorial]

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     19

Printed by Wolfram Mathematica Student Edition



Introduction

A Crash Course in Mathematica

The Theory of Natural Numbers

Rough Sketch of an Induction Prover

A More Elaborate Induction Prover

Conclusion

20     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



A Representation of the Natural Numbers

We decide to represent the natural numbers by the Mathematica expressions

0

0+

SuperPlus[0]

0++

SuperPlus[SuperPlus[0]]

...

In “FullForm” these are, actually the expressions

0

SuperPlus[0]

SuperPlus[SuperPlus[0]]

...

(I do not use the usual notation 0, 1, 2, .... for the natural numbers because they are already built-in 
in Mathematica and I want to avoid that anything is already “known” about the natural num-
bers except what I will explicitly define.)

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     21

Printed by Wolfram Mathematica Student Edition



A Definition of ‘plus’ on the Natural Numbers

Clear[plus]

plus[x_, 0] := x

plus[x_, y_+
] := plus[x, y]+

(I do not use ‘Plus’ because ‘Plus’ is already built-in in Mathematica. For the same reason, I do not 
us the usual notation ‘+‘ for ‘plus’.)

Now, we can computer

plus[0, 0]

0

plus[0++++++, 0++++]

0++

+

+

+

+

+

+

+

+

plus[0++++++, 0++++] // FullForm

SuperPlus[SuperPlus[SuperPlus[

SuperPlus[SuperPlus[SuperPlus[SuperPlus[SuperPlus[SuperPlus[SuperPlus[0]]]]]]]]]]

Clear[plus]

22     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



A Definition of ‘times’ on the Natural Numbers

SEE TUTORIAL

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     23

Printed by Wolfram Mathematica Student Edition



Building up the Theory of Natural Numbers

For building up efficient algorithms for interesting problems that can be expressed in the mathemat-
ical structure “natural numbers” (for example the binary or decimal representation of natural 
numbers and efficient algorithms on these representations) we need to know many properties of  
‘plus’ and ‘times’ and the many other operations (functions and predicates) which we will like to 
define over the naturals.

24     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



Example of a Property of ‘plus’

“Commutativity” of ‘plus’:

forAll[{x, y}, plus[x, y] ≡ plus[y, x]]

(Notation could be different, it only concerns “the surface”. Important: It must be possible to 
“parse” any expression uniquely in its sub-parts! In Mathematica, the internal form may always be 
seen by using “FullForm”. We cannot use ‘=’ here for equality because ‘=’ has a specific built-in 
meaning in Mathematica which would cause the formula to be evaluated in a way we do not want 
here.)

forAll[{x, y}, plus[x, y] ≡ plus[y, x]] // FullForm

forAll[List[x, y], Congruent[plus[x, y], plus[y, x]]]

The intended range of the “quantifier” ‘forAll’ is the set consisting of  

0

0+

0++

...

and nothing more!

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     25

Printed by Wolfram Mathematica Student Edition



How Can we Prove this Property?

Try it!

We need “induction” over the structure ( 0, +).  Why? Couldn’t we prove this differently?

26     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



“Induction Principle” (Proof Method of Induction)

For any property ‘P’,

in order to prove

forAll[{x}, P[x]],

it suffices to do the following:

Induction base: Prove

P[0].

Induction step: Take ‘X’ arbitrary but fix, assume the “induction hypothe-
sis”

P[X]

and prove

P[X+].

Why does this principle work?

What does “arbitrary but fix” mean?

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     27

Printed by Wolfram Mathematica Student Edition



Let’s Try to Prove Commutativity Now

Since we have two quantified variables, we should look at the formula in the following way:

forAll[{x}, forAll[{y}, plus[x, y] ≡ plus[y, x]]]

i.e. the formula ‘P’ in the induction would be

forAll[{y}, plus[x, y] ≡ plus[y, x]]

For the induction basis w.r.t. ‘x’, we hence should prove:

forAll[{y}, plus[0, y] ≡ plus[y, 0]]

For this, we take y arbitrary but fix, and try to prove 

plus[0, y] ≡ plus[y, 0].

By the definition of ‘plus’ we know

plus[y, 0] ≡ y

However, from the definition of ‘plus’ we do not yet know that

plus[0, y] ≡ y.

For this, we need another induction.

28     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



Prove “Left Zero” 

Thus, before we prove commutativity, let’s prove:

forAll[{y}, plus[0, y] ≡ y].

Induction base: Prove 

plus[0, y] ≡ y.

This is easy  by the first line in the definition of ‘plus’.

Now we take y arbitrary but fix. Induction hypothesis:

plus[0, y] ≡ y.

We have to prove:

plus[0, y+] ≡ y+.

In fact, by “simplification” (applying the logic of “equality”) we have:

plus[0, y+] ≡

by the second line in the definition of ‘plus’

plus[0, y]+
≡

by the induction hypothesis

y+.

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     29

Printed by Wolfram Mathematica Student Edition



The Motivation for Automated Proving

All this is, in principle, easy but necessary. 

In fact, if we build up a theory like the theory of naturals step by step, by introducing more and 
more functions and predicates and studying their relationships we need hundred of such proofs. 
This is cumbersome and, of course, also error-prone.

Instead of doing all these proofs individually  by “hand” (i.e. by using our brain for each individual 
proof, let’s better invest our brain once for writing an algorithm that can do all proofs in this 
class by just “pressing a button” (i.e. by giving the properties conjectured -  together with the 
knowledge base of definitions and properties already proved - as an input).

30     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



Introduction

A Crash Course in Mathematica

The Theory of Natural Numbers

Rough Sketch of an Induction Prover

A More Elaborate Induction Prover

Conclusion

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     31

Printed by Wolfram Mathematica Student Edition



A Rough Sketch of an Induction Prover for Equalities Using Mathematica

First, we represent the definition (“axioms”) from which we start as “rewrite rules”:

Axiomsℕplus = {plus[x_, 0] ⧴ x, plus[x_, y_+
] ⧴ plus[x, y]+

}

{plus[x_, 0] ⧴ x, plus[x_, y_+] ⧴ plus[x, y]+}

(I will explain the subtle reason for doing this in the lecture.)

The process of simplifying by rewriting, which is the reasoning method to be used for equalities 
with no induction variables, can then be described in Mathematica like this:

Clear[SimplifyByRewriting]

SimplifyByRewriting[expression1_ ≡ expression2_, {equalities___}] :=

If

expression1 //. {equalities} === expression2 //. {equalities}, Proved, Unproved

(I will explain the basic Mathematica functions used in the program in the lecture.)

Test Examples:

SimplifyByRewriting[plus[0+++, 0++] ≡ plus[0++, 0+++], Axiomsℕplus]

Proved

SimplifyByRewriting[plus[0+++, 0++] ≡ plus[0++++, 0+++], Axiomsℕplus]

Unproved

32     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



Induction for equalities with only one induction variable can then be described in Mathematica like 
this:

Clear[ProveByInduction]

ProveByInduction[forAll[{n1_}, expression1_ ≡ expression2_], {equalities___}] :=

IfAnd

SimplifyByRewritingexpression1 ≡ expression2 /. n1 → 0, {equalities} === Proved ,

SimplifyByRewritingexpression1 ≡ expression2 /. n1 → n1+
,

{equalities, expression1 ⧴ expression2} === Proved,

Proved, Unproved

Test Examples:

ProveByInduction[forAll[{x}, plus[0, x] ≡ x], Axiomsℕ0plus]

Proved

ProveByInduction[forAll[{x}, plus[0, x] ≡ 0], Axiomsℕ0plus]

Unproved

Clear[SimplifyByRewriting, ProveByInduction]

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     33

Printed by Wolfram Mathematica Student Edition



We Want to See the Proof!

For this, we have to establish a recursive data structure that keeps track of the “tree”  of the 
individual proof steps (even failing ones) and, at the end, allows us to “read” the entire proof.

Also, the proof should be structured so that we can “close” whole sub-parts in the proof if we are 
not interested in the details. 

Roughly, for this, we introduce the following  data structure for “reasoning trees” in Mathematica 
(which is applicable not only for induction proofs and equalities):

RT[

reasoningMethod (* comment on the reasoning method;

typically, we just use the identifier of the method *),

goal (* formula to be reasoned on *),

knowledge (* a list of formulae *),

result (* result of applying the

reasoningMethod to the goal using the knowledge *),

{reasoningTree1, reasoningTree2, ...} (* list of reasoning subtrees *)]

(Details of the notation will be explained in the lecture. We us “RT” as tag for “reasoning tree”.)

34     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



Displaying Reasoning Trees in “Nested Cells Form”

I wrote a little Mathematica program (see the code for ‘NestedCellForm’ in the appendix of the 
tutorial), which displays nested reasoning trees as Mathematica notebooks with “nested cells” so 
that entire sub-trees can be closed  and opened by clicking at the respective cell brackets.

Example: Our reasoner that also stores the intermediate steps of the proof, for the 

forAll[{y}, plus[0, y] ≡ y].

will produce the folllowing reasoning tree that shows the subproof in subtrees of the nested 
expression

reasoningTree = RT[Prove, forAll[{y}, plus[0, y] ≡ y],

{plus[x_, 0] → x, plus[x_, y_+
] → plus[x, y]+

}, Proved,

{RT[ProveBySimplificationOrInduction, forAll[{y}, plus[0, y] ≡ y], {}, Proved,

{RT[ProveBySimplification, plus[0, 0] ≡ 0, {}, Proved,

{RT[SimplifyByRewriting, plus[0, 0] ≡ 0, {}, 0 ≡ 0]}], RT[ProveBySimplification,

plus[0, y+] ≡ y+, {plus[0, 0] ⧴ 0, plus[0, y] ⧴ y}, Proved, {RT[SimplifyByRewriting,

plus[0, y+] ≡ y+, {plus[0, 0] ⧴ 0, plus[0, y] ⧴ y}, y+ ≡ y+]}]}]}]

From there, by our ‘NesteCellsForm’ function we can produce an extra Mathematica notebook that 
displays the proof in easy-to-read nicely structured form that is, in fact, much nicer to study than a 
“spaghetti proof” in a text book.

reasoningTree // NestedCellsForm

NotebookObject Untitled-37 

Just try it out.

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     35

Printed by Wolfram Mathematica Student Edition



Introduction

A Crash Course in Mathematica

The Theory of Natural Numbers

Rough Sketch of an Induction Prover

A More Elaborate Induction Prover

Conclusion

36     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



Sketch of the Prover

Our induction prover for equalities over the natural numbers with arbitrarily many induction 
variables has three layers:

SimplifyByRewriting

ProveBySimplification

ProveBySimplificationOrInduction

And a starter 

Prove

that calls ‘ProveBySimplificationOrInduction’ and displays the initial theory, which is stored in the 
global variable

$Theory

and which is not any more displayed in the subsequent proof steps is  for keeping the individual 
proof cells small.

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     37

Printed by Wolfram Mathematica Student Edition



‘SimplifyByRewriting’

Clear[SimplifyByRewriting]

SimplifyByRewriting[expression_, {equalities___}] :=

RTSimplifyByRewriting,

expression,

{equalities},

expression //. $Theory~Join~{equalities}

(The program will be explained in detail in the lecture.)

38     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



‘ProveBySimplification’

Clear[ProveBySimplification]

ProveBySimplification[leftExpression_ ≡ rightExpression_, {equalities___}] :=

Module[{reasonTree, result, r, lhs, rhs},

reasonTree = SimplifyByRewriting[leftExpression ≡ rightExpression, {equalities}];

r = Result[reasonTree]; lhs = r[[1]]; rhs = r[[2]];

result = If[lhs === rhs, Proved, Unproved];

(* Result[reasonTree] has the form lhs ≡ rhs,

where lhs and rhs are simplified w.r.t. the equalities.*)

RT[ProveBySimplification,

leftExpression ≡ rightExpression,

{equalities},

result,

{reasonTree}]]

(The program will be explained in detail in the lecture.)

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     39

Printed by Wolfram Mathematica Student Edition



‘Prove’

Clear[Prove]

Prove[expression_] :=

Module[{reasonTree, result},

reasonTree = ProveBySimplificationOrInduction[expression, {}];

result = Result[reasonTree];

RT[Prove,

expression,

$Theory,

result,

{reasonTree}]]

(The program will be explained in detail in the lecture.)

40     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



‘ProveBySimplificationOrInduction’

Clear[ProveBySimplificationOrInduction]

ProveBySimplificationOrInduction[

forAll[{n1_, n__}, expression_], {equalities___}] :=

Module{reasonTree0, reasonTree1, reasonTree2, result},

reasonTree0 = ProveBySimplification[expression, {equalities}];

result = Result[reasonTree0];

If[result === Proved,

Return[

RT[ProveBySimplificationOrInduction,

forAll[{n1, n}, expression], {equalities}, Proved, {reasonTree0}]]];

reasonTree1 = ProveBySimplificationOrInduction

forAll{n}, expression /. n1 → 0, {equalities};

result = Result[reasonTree1];

If[result === Unproved,

Return[

RT[ProveBySimplificationOrInduction,

forAll[{n1, n}, expression], {equalities}, Unproved,

{reasonTree1}]]];

reasonTree2 =

ProveBySimplificationOrInductionforAll{n}, expression /. n1 → n1+
,

equalities,

RuleFromEqualityforAll{n}, expression /. n1 → 0,

RuleFromEquality[forAll[{n}, expression]];

result = Result[reasonTree2];

RT[ProveBySimplificationOrInduction,

forAll[{n1, n}, expression], {equalities}, result,

{reasonTree1, reasonTree2}]

ProveBySimplificationOrInduction[forAll[{n1_}, expression_], {equalities___}] :=

Module{reasonTree0, reasonTree1, reasonTree2, result},

reasonTree0 = ProveBySimplification[expression, {equalities}];

result = Result[reasonTree0];

If[result === Proved,

Return[

RT[ProveBySimplificationOrInduction,

forAll[{n1}, expression], {equalities}, Proved, {reasonTree0}]]];

reasonTree1 = ProveBySimplificationexpression /. n1 → 0, {equalities};

result = Result[reasonTree1];

If[result === Unproved,

Return[

RT[ProveBySimplificationOrInduction,

forAll[{n1}, expression], {equalities}, Unproved,

{reasonTree1}]]];

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     41

Printed by Wolfram Mathematica Student Edition



reasonTree2 = ProveBySimplificationexpression /. n1 → n1+
,

equalities,

RuleFromEqualityexpression /. n1 → 0, RuleFromEquality[expression];

result = Result[reasonTree2];

RT[ProveBySimplificationOrInduction,

forAll[{n1}, expression], {equalities}, result,

{reasonTree1, reasonTree2}]

ProveBySimplificationOrInduction[expression_, {equalities___}] :=

ProveBySimplification[expression, {equalities}]

(The program will be explained in detail in the lecture.)

42     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition



Introduction

A Crash Course in Mathematica

The Theory of Natural Numbers

Rough Sketch of an Induction Prover

A More Elaborate Induction Prover

Conclusion

Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb     43

Printed by Wolfram Mathematica Student Edition



Conclusion

I hope I was able to motivate you

◦ to improve your formal proving skill

◦ to play with the sample prover to explore more and more 
rounds of (equational inductive) natural number theory

◦ to expand the prover to parts of natural number theory 
beyond equational inductive theory

◦ to expand the prover to other inductive domains

◦ to expand the prover to more general proof methods and 
other mathematical theories

◦ to enjoy mathematical theory exploration by working on 
the object and the meta level in parallel

◦ to use provers for teaching proving

◦ to use the Theorema system for formal automated mathe-
matical theory exploration (in case you are interested write 
to me for obtaining a free license under open source license 
conditions).

and to give you the feeling that you are well prepared for the next “revolutions” in the world of 
math and software based technology.

44     Buchberger AIMS 2017 Lecture Slides 2017 10 08 18h00.nb

Printed by Wolfram Mathematica Student Edition


